
Hystrix It. J. Mamm. (n.s.) 18 (2) (2007): 185-194

COLLECTION, WAREHOUSING AND DISSEMINATION OF

SPECIMEN INFORMATION: AN ADDED VALUE FOR
THERIOLOGICAL COLLECTIONS

DAMIANO G. PREATONI

Dipartimento Ambiente-Salute-Sicurezza, Università degli Studi dell'Insubria,

Via J.H. Dunant 3, 21100 Varese, Italy; e-mail: prea@uninsubria.it

Received 15 September 2007; accepted 7 December 2007

ABSTRACT - Recent achievements in the technologies for information management and
sharing would allow to make more available and exploitable the wealth of data represented
by theriological museum collections. Anyway, the scarce diffusion of Information
Technology knowledge in the theriological field hinders the transition towards digital
cataloguing of collections, often leading to the creation of data bases unable to last through
time and without coherent information management policies. The aim of this contribute is
to present a concise review of the existing practices and technologies used to design and
implement information systems, in order to promote the increasing application of such
technologies in the theriological and, in general, in the natural resource conservation field.

Key words: Museum collections, database design, information systems

RIASSUNTO - Raccolta e condivisione delle informazioni sui reperti: un valore aggiunto
per le collezioni teriologiche. I recenti sviluppi delle tecnologie per la gestione e la
condivisione delle informazioni rendono oggi possibile una maggiore fruibilità e
disponibilità del patrimonio costituito dalle collezioni teriologiche. Tuttavia, la scarsa
diffusione nel contesto teriologico e museologico delle conoscenze nel campo
dell’Information Technology rende difficoltosa la transizione verso la catalogazione in
formato digitale, portando spesso alla creazione di banche dati che non garantiscono una
ragionevole durata nel tempo né la necessaria coerenza nell’organizzazione delle complesse
informazioni concernenti il catalogo di una collezione. Il presente contributo offre una
concisa rassegna dei principi di base e delle pratiche più comuni nello sviluppo di sistemi
informativi, con l’obiettivo di favorire una loro sempre maggiore applicazione nel campo
della teriologia e della conservazione delle risorse naturali in generale.

Parole chiave: collezioni museali, progettazione di basi di dati, sistemi informativi

INTRODUCTION

Museum collections, in particular the
theriological ones, represent a great
asset for the whole scientific
community. The last ten years achieve-
ments in technologies for networked

information sharing, as well as the
ongoing standardisation in information
technology practices, would allow to
make this wealth more available and
usable by all users.
Information, by itself, can be defined as
a peculiar kind of "renewable resour-

185

Preatoni D.G.

ce": it is an immaterial resource, and its
efficiency seems to depend more on
how information is organised rather
than information content itself. As an
example consider the differences
between a computer-based and a paper-
based catalogue: though the informa-
tion contained in both contexts is
exactly the same, its organisation
makes the two systems almost totally
different in their employment and
performance.
In a paper-based catalogue, all relevant
items are usually stored (i.e. written)
together on a single card, drastically
limiting their availability for more than
a single person at a given time. On the
other hand, trying to increment
information availability using "replica-
tes" (i.e. copies of each card) other
problems are roused, e.g. the need of
updating all the copies of a card, which
can quickly become a hard task.
The use of information technologies to
build information systems for museum
collections makes information mainte-
nance, updating and dissemination
easier, opening further possibilities
than the increase in availability: a
remarkable trait of information as a
"renewable resource" is its tendency to
increase (and not to degrade or vanish)
with use. This is especially true when
the use of an information system allows
to produce new information from
existing items (either by analysis or
synthesis), or to rearrange without
harm the entire knowledge base,
enhancing both the quality and quantity
of the information handled by the
system.
Therefore, it is possible to define some
requirements to be met by a computer-
based information management system,

in order to efficiently handle informa-
tion contents and flows typical of a
museum collection catalogue.
The use of a computer-based catalogue,
as a matter of fact, should be functional
to the transformation of the existing
(and supposedly working) catalogue
into a shared and more available asset,
able to grow and last in time. The main
characteristics of such a system can be
summarised as follows:
- independency from particular hard-
ware and software architectures;
- guarantee to endure through time;
- simplicity in accessibility, availability
and use;
- possibility to handle information sup-
plied by users.
The apparently wide choice of software
and hardware tools could suggest the
existence of a simple and straight
solution to the problem: in contrast,
current situation is extremely complex
and mutable, and really viable
solutions, given the requisites listed
above, are indeed few.
Several of the available systems to
create and operate a database are
designed to build small personal
databases that can be produced in a
short time and maintained with little
effort. Notwithstanding this friendly
appearance, these systems cannot
guarantee any functionality either if the
quantity of information raises or if data
need to be shared. These systems also
badly tolerate any rearrangement of the
"rules" defined to store and organize
data.
In addition, it is rather frequent that,
just for commercial reasons and with
no real advantages to the user, the
format used to represent data (the so
called "inner schema") of a given

186

Database design and theriological collections

personal database management system
changes abruptly from year to year,
severely compromising any possibility
for the database to endure through time
for more than five years (the so-called
"backward incompatibility" problem).
This and other factors suggest that the
choice of a software tool based on its
apparent simplicity and swiftness could
lead in the long time to the realisation
of an information system worse than an
"old style", paper-based one.
Applying these concepts to the
realisation of a computer-based collec-
tion catalogue, some solutions are here
presented and discussed, focusing on
good practices and pointing out the
different and necessary steps defining
the lifecycle of design, development
and use of a database.

SYSTEMS ARCHITECTURE

Whilst personal database systems
usually consist of a single program
installed on a single computer, an
efficient data base management system

is often designed as a set of separate,
interacting modules (Fig. 1). Each
module is able to perform just a few
well-defined and specific functions.
This sort of distributed architecture can
lead to several implementations, depen-
ding on the degree of separation among
functions. Two main architectures are
used: a two-tier architecture, involving
a server system which handles data
storage and management and a client
system which only consumes (i.e. uses)
data, and a three-tier system similar to
that represented in Figure 1, where a
second server (a web server for
instance) joins the proper database
server, acting as an inter-mediate proxy
between the server and several (and
diversified) minimal data consumers
(such as web browsers).
The separation among functions
achieved with a server-client architec-
ture allows to build truly distributed
and accessible data bases, since all the
functions connected with data manage-
ment are carried out by a single central
computer, which is easily accessible by

Figure 1 - Concept schema of a typical client-server architecture.

187

Preatoni D.G.

users. In this way, the problems linked
to "monolithic" databases, that require
the dissemination of copies to the
various clients and then suffer,
although in a more sophisticated
fashion, from the same handicaps of
paper-based catalogues, can be
overcome.

SERVER MODULES

In a generic two- or three-tier
architecture, the server is dedicated to
storage functions, managing both data
and rules to which data must adhere
("metadata" or "schema"). In most
cases, server modules are highly
specifically designed softwares, run-
ning under a given operating system
and available as services to other
programs (clients). They are not
directly visible to users, allowing just
low-level interactions, for base
administrative functions such as the
definition of the “schemas” to which
data must conform (also called “outer
schemas”), or other data organization
rules, such as data access constraints
(usually called “rights” or “grants”) and
bulk data transfers in raw formats (data
pumping or data base population). The
data base management system (DBMS)
constitutes then the heart of an
information system, with which users
interact by intermediate programs that
are either specialised data analysis
packages or data base administration
tools, used to make backup copies or to
grant / revoke access rights to users.
An efficient DBMS is not only able to
store data and metadata, but also allows
to store all the relevant and recurrent
procedures to manipulate information,
supplying, by means of tools such as

"views" and "procedures", further tools
for widely manipulating (i.e. create,
retrieve, update or delete) its contents.
All these functions are assembled in a
single container in a way that is totally
transparent to the final user.
At a first glance, this solution could
seem awkward and less effective than
the "single program plus data file"
monolithic solution.
Anyway, the total separation of data
storage functions and tasks from data
presentation and use, together with the
capacity of storing views and proce-
dures, that is of storing even complex
analysis procedures, and the possibility
to serve simultaneously several clients
("transational" approach), using a
consistent language to dialogue (nor-
mally a declarative one such as SQL),
make DBMS an instrument able to
cope with the time endurance,
scalability and coherence requirements
discussed above.

CLIENT MODULES

If the typical characteristics of a DBMS
server make this set of tools a real data
warehouse and limit its functionalities
just to data storage and retrieval, on the
client side issues are exactly on the
opposite: the possibilities of using data
are in fact almost infinite and
unpredictable, and several programs
can share the same data warehouse,
using it in many different ways.
Considering the specific case of a
system devised to handle a museum
catalogue, it is possible to imagine the
existence of several specialised client
softwares: apart from those for the
simple database administration, it is
possible to have softwares for handling

188

Database design and theriological collections

data about specimens, printing labels or
paper catalogues, mapping specimen
locations, performing biometrical and
morphometrical analyses, or comparing
and aligning DNA sequences coming
from the specimens themselves.
Possibilities are almost infinite, and
especially in this case, the use of a two-
or three-tier architecture allows first to
concentrate into a single place (the
server) all the data manipulation
functions common to all clients, and,
second, to develop, use and maintain
each client system separately, with
little or no influence at all on other
"data consumer" programs. These two
characteristics are almost impossible to
obtain working with a monolithic
database system, where data applica-
tion is tightly connected with data
repository, and the possibility of their
true concurrent use is often not
implemented.

DATA WAREHOUSE DESIGN

A database should reflect the
information categories and flow of a
given organisation (e.g. a museum
collection catalogue), and therefore, to
achieve a really functional product
rather than just an addition of
constraints, the design process should
consider all the facets and details of the
existing reality.
Modern database design techniques
(Atzeni et al., 2002) emphasize
identification and formalisation of the
"rules" to which data have to be
conformed (both in the conceptual
modelling phase and while defining the
logical and physical database schemas),
relegating data themselves to the
background. To consider primarily

"rules" than data, for example
producing the so-called "schema" of a
database, helps in the first place to
verify how data should be organised
and to evaluate the efficiency and
coherence of the existing paper-based
information system, pointing out any
positive sides, which need to be
effectively transferred and preserved in
the computer-based information
system.
A software tool that can only produce a
graphical representation of a database
model, even if a schematic represen-
tation of a database surely gives a
deeper insight on data organisation, is
not worth using. The next step should
be the translation of such a schema into
instructions readily available to the data
base management software, or - better -
to a range of different DBMS systems,
so as not to force the designer to a
particular DBMS software and to allow
to reproduce the same schema on a
different software product. Especially
for complex databases, it is
inconceivable to convert by hand a
graphical representation of the schema
into a machine-readable one, because it
would be both a time-consuming and
error-prone task. Actually, some
database modelling softwares allow to
automatically extract all the relevant
information from the model, using the
captions and descriptions linked to each
single object, to produce text docu-
ments useful to properly describe the
information system. This, of course, is
far more than the possibility to store
simple descriptions of each separate
object constituting a database, a
functionality that is present in most
database systems.
In conclusion, the design process is

189

Preatoni D.G.

articulated in several consecutive
phases, which will be described below.
Although they are presented separately,
in real cases the server and client
designs are developed together, and
influence each other. In particular, the
design of a client system cannot be
done without a sound knowledge of the
data structures and services offered by
the server.

THE SERVER DESIGN

1. Conceptual modelling

The first step in the modelling process
includes the identification and
understanding of all the peculiar
characteristics of the information
system and of all the possible user
roles. Moreover, the relevant data flows
and manipulation processes have to be
pointed out. Usually, this phase is
already made using a modelling tool,
but can be carried out equally well with
a simple paper-and-pencil approach,
aimed at identifying the "actors" of the
particular data context that has to be
managed.

2. Logical modelling

On the basis of the outcomes of the
conceptual modelling phase, it is
possible to identify the data structures
(tables and fields in each table,
relationships between tables, data
integrity constraints, etc.), which are
necessary to guarantee a proper data
storage and retrieval. Particular
attention must be paid to identify and
resolve any redundancy (using
normalisation techniques, Codd, 1970).
The outcomes must be reviewed with

the future users of the systems, to
check whether their necessities have
been met or not.

3. Physical modelling

Until a precise definition of the type of
data which have to be stored in each
field is not available, the produced
logical model should not depend on a
specific DBMS software. Physical
modelling involves the adaptation of
the logical model to the constraints (or
advantages) offered from any specific
software. It is important to point out
that today most data base management
software share a number of commonly
implemented data types and structures,
freeing the designer from the con-
straints which depend on the choice of
a particular program. The possibility of
changing one's mind and reverting to a
different DBMS while developing the
physical model is not negated. This
paradigm is valid, of course, for data
base management software realised in
compliance with the current standards
(such as ISO/ANSI SQL-99 and SQL-
2003, Melton and Simon, 1993), even
if some small differences could exist.

4. Prototyping

The physical realisation of a DBMS
has to be tested on a properly equipped
system, also loading existent data to
test the performance of the prototype.
The deployment of a prototype often
involves the realisation of accessory
programs (or simple operating proce-
dures) to fill in the database itself with
quantities of pre-existing data ("data
population"; this process is different
from the routine addition of few new

190

Database design and theriological collections

records at a time). When data migrate
from a paper-based system to a
computer-based one, the process
involves the initial mass conversion of
the existing material into a digital
format, causing, as a by-product, the
development of further procedures or
the refinement of the database schema
itself.

5. Prototype evaluation and testing

This phase includes all the tests on the
prototype which, in compliance with
the functional requisites defined in the
conceptual modelling phase, are needed
to check whether the new system meets
the functionalities requested by final
users, and also to identify any error
both in the data structures organisation
and in the procedures developed to
manipulate the data.

6. Deployment into production

The final step in the development cycle
coincides with the installation on a
computer of the data base management
software along with the physical
schema and all the relevant data. This
computer will serve data to all users,
deploying the information system "into
production".

THE CLIENT DESIGN

1. Functional analysis

In analogy with the conceptual design
phase of the server system, in this first
step of the client design all the
functionalities and operations, which
have been requested by final users,
have to be identified, often working in

collaboration with the users them-
selves. This step must be subject
neither to a specific type of client, nor
to specific programming languages or
existing software development practi-
ces and tools.

2. Interface design

The functionalities needed by users are
translated into a form, that is into
textual or - more commonly - graphical
user interface elements - such as text
boxes, buttons, menus - defining the
structures by which users will interact
with the DBMS. Also in this phase
choices are not mandatory, that is
subject to a specific tool for software
development. Even if standard interface
elements (called “widgets” or
“controls”) are present on any develop-
ment platform, their degree of
differentiation is higher than that
described before for the available data
types used in the physical design. The
various tools used to realise a user
interface offer a wide variety of user
interface elements; available controls
often work in different ways and have
to be programmed differently, even if,
from the user’s point of view, their
look is identical. As a consequence, the
interface design can often result a very
complex task.

3. Interface realisation

Once the interface design has been
defined, often by the discussion of
interface mock-ups with the final users,
a particular programming technique
and language are used to create a
working prototype. Several solutions
are obviously possible, ranging from

191

Preatoni D.G.

simple command-line based interfaces
(CLI), useful to perform repetitive
tasks, up to more complex graphical
user interfaces (GUI), developed in
high-level languages such as C or C++,
Java, Python, Delphi, Ruby, PHP, etc.
In this case, the approach is heavily
influenced by the programming
language chosen and by the program-
ming libraries available for a given
language, which could make the client
application development easier.

4. Usability tests

As described before for the server, the
client prototype has to be tested by
users, more often a restricted group of
users ("power users"), which can give
to the application programmers some
useful feedback or suggestions about
some elements of the client design that
result difficult to understand or poorly
performing.

5. Deployment

As for the server design, the final
version of the client is installed, often
(but not necessarily) on the same
computer that hosts the server system.

TOOLS

To list all the software tools available
to carry out the steps outlined above is
an almost impossible task: new tools
are released rather frequently and new
design and implementation techniques
appear each year. The following list is
thus inevitably based on the author’s
personal preference and experience,
and must be not considered exhaustive.
It is also worth stating that the author

has no relationship with the developer
or distributors of the cited software
tools other than being a satisfied user.
A particular emphasis is given here to
the programs realised according to the
Free/Open Source Software (FOSS)
paradigm, because they are widespread,
cheap (or free) and, which is perhaps
more interesting, available for different
operating systems and computer types.
The use of FOSSs is rewarding, since
the characteristics of most open source
programs correspond to the requisite of
independency from hardware and soft-
ware changes and guarantee a long life
to the data base.
For a detailed description of the follo-
wing software programs, address to the
correspondent web sites.

TOOLS FOR DATABASE DESIGN
AND REALISATION

Even if database design is a crucial
step, a few general-purpose tools,
which can run under different operating
systems and work with different DBMS
servers, are available. This probably
happens because database designers are
few (when compared to the number of
database users), and one or two
widespread tools predominate on the
market. Actually, most of the available
tools depends on a particular DBMS
software, or runs only under one
operating system.

1. Entity-relationships (Chen, 1976)
modelling tools

DB Designer 4 (http://fabforce.net-
/dbdesigner4/). Dedicated to develop-
ment of data bases based on the
MySQL DBMS.

192

Database design and theriological collections

MySQL Workbench (http://dev.mys-
ql.com/downloads/gui-tools/5.0.html).
Another tool for the MySQL DBMS,
bundled together with MySQL itself.
TOAD Data Modeler (formerly called
CASE Studio 2, http://www.casestu-
dio.com/enu/default.aspx). Database
design tool for several different
DBMSs.
Clay Database design tool (http:
//www.azzurri.jp/en/software/clay/Ecli
pse/). A multi-purpose database design
tool, integrable as a plugin for the
highly flexible Eclipse software
development tool (http://eclipse.org/).

2. Data Base Management Systems
(servers)

Several are the tools available to set up
ANSI92 compliant data base servers.
The three listed below are probably the
best performing ones and the most
widespread (in particular MySQL, the
most used database backend for web-
based applications). Firebird, and
moreover Postgres, even if apparently
less widespread, are far more robust
and mature than MySQL.
MySQL (http://www.mysql.com/) Win-
dows, Linux
Firebird (http://www.firebirdsql.org/)
Windows, Linux
PostgreSQL (http://www.postgresql.org/)
Windows, Linux

3. Data Base administration and
maintenance tools

BlazeTop (formerly SQL Hammer,
http://www.devrace.com/en/blazetop/)
Windows, for Firebird DBMS.
FlameRobin (http://www.flamerobin.org/)
Windows, Linux, for Firebird DBMS.

PgAdmin III (http://www.pgadmin.org/)
Windows, Linux, for PostgreSQL.
MySQL Administrator (http://www-
it.mysql.com/products/tools/administrat
or/) Windows, for MySQL.

4. Web server and related tools

A web server is needed when a three-
tier architecture is chosen, and provides
to users the graphical interfaces as
dynamic web pages. These are often
created by programs written in
languages, such as PHP, which are read
and interpreted by the web server itself.
This technique is known as LAMP
(Linux, Apache, MySQL, PHP) or
WAMP (Windows, Apache, MySQL,
PHP), depending on the operating
system used.
In this case, the Apache Web server,
available for almost all the existing
operating systems, represents the only
reliable choice.
Apache, particularly Apache2 (http:
//www.apache.org/).
Several pre-packaged installation kits
for Windows and Linux operating
systems are available, in particular
XAMPP (http://www.apachefriends.-
org/en/xampp-windows.html) and
MapServer for Windows (http://www.-
maptools.org/ms4w/), the latter inten-
ded to develop web-based Geographic
Information Systems using WAMP
techniques.

5. Application program development

Programming languages: the number of
development systems is rather high:
among others it is worth citing the PHP
(Personal Home Page) programming
language (http://php.net/), particularly

193

Preatoni D.G.

used for developing web-based
applications. The libraries distributed in
the PEAR (PHP Extension and
Application Repository) network
enhance the rapid development of PHP
applications.
For stand alone (not web-based)
application development, the Delphi
development platform seems to be the
most widespread solution (http://www.co-
degear.com/tabid/122/Default.aspx).
Other solutions are available, such as
the Python language (http://www.py-
thon.org/), or some systems modelled
after the Visual Basic language, such as
Gambas (http://gambas.sourceforge.net/).

REFERENCES

Atzeni P., Ceri S., Paraboschi S. and

Torlone R. 2002. Basi di dati, modelli
e linguaggi di interrogazione. McGraw-
Hill. ISBN 88-386-6008-5.

Chen P. 1976. The entity relationship
model: toward a undified view of data.
ACM Transaction on DB system 1, 1:
9-36.

Codd E.F. 1970. A relational model of data
for large shared data banks. Com-
munications of the ACM, 13(6): 377-
387.

Melton J. and Simon A.R. 1993. Under-
standing the New SQL: a complete
guide. Morgan Kaufmann. ISBN 0-
55860-245-3.

194

